Volume 1, Issue 1, October 2021 (95-110)

ISSN: 2808-4829

CO₂ Emission Contribution Analysis of Rice Distribution Channels in Indonesia

Armandha Redo Pratama

Department of Tourism Education, Faculty of Social Sciences Education, Universitas

Pendidikan Indonesia

(email: armandharedo@upi.edu)

Abstract

According to Horrigan (2002), the food industry accounts for 10% of all fossil fuel consumption in the United States. Based on this, an effective rice distribution effort is needed as an effort to achieve food security. Moreover, the effective distribution channels will reduce the impact of CO2 emissions in the air. This study examines how the rice distribution channels in Indonesia and the amount of CO2 emissions resulting from these activities. This study using substitution analysis technique based on equation and conversion value of CO2 residue based on the type of transportation mode. The results show that the total emissions from rice distribution activities are 36.007,97 tons km or 0,026% of the total emissions generated by transportation activities.

Keywords:

Rice Distribution, CO₂ Emission, Transportation

Introduction

Indonesia is the world's fourth most populous nation (World Bank, 2018). It can give a negative or positive impact, one of the negative impacts is the problem of food security. Based on Government Regulation no. 17 of 2015, food security is the matter which consist of availability, affordability, and equity. Another opinion states that food security is basically a condition of the fulfillment of energy needs for the community in a wide regional scope, to households (Pinstrup-Andersen, 2009; Rivani, E. 2012). Indonesia as an archipelagic country, one of the obstacles in food security is related to distribution activities. Generally, in the implementation of logistics activities, transportation activities are the activities that spend the most funds, which is around 46,5% - 58,6% of the total logistics costs. It shows that distribution system efficiency is very helpful in efforts to meet food security, because the higher distribution costs, the higher basic costs and it will increase the selling price. The high selling price will potentially weaken the society's reach to fulfill food needs, where affordability of access to food is one aspect of food security (FAO, 2006; Nugroho, C.P & Mutisari, R. 2016).

Sustainability: Theory, Practice and Policy Volume 1, Issue 1, October 2021 (95-110)

ISSN: 2808-4829

The importance of the distribution channels efficiency is also applied in the theory of industrial location by Max Weber, where the consideration of the placement of industrial locations is based on considerations of distance and geographical conditions between sources of raw materials, markets, and labor. Distribution efficiency in the context of achieving food security is how far the origin of rice circulating in an area is imported.

Based on 2016 statistics Indonesia data, several provinces in Indonesia still supply rice from more distant provinces. For example, North Sumatra Province: where the demand of rice is supplied from South Sulawesi Province as much as 12,7%. This case study can be explained through the food miles approach which was initiated by the SAFE Alliance in 1994 (Saunders. Et al, 2006).

There are three indicators in this approach, namely accessibility, cost, and environment (Kemp, K. et al, 2010). The food industry accounts for 10% of all fossil fuel consumption in the United States. In addition, it is also stated that 80% of energy use in the food industry is related to processing, distribution, cooling, and preparation activities (Horrigan. 2002; Hill. 2008). Rigby and Bown (2003) also mention that based on 2001 sustain data there are three general categories of CO₂ emission production in the UK, namely (a) 4,2 tons by household activities, (b) 4,4 tons produced by private vehicle activities, and (c) 8 tons produced by packaging activities.

Those explanation shows that distribution activities are one of the largest contributors to CO₂ emissions. This article aims to identify distribution channels for fulfilling rice in all provinces in Indonesia and calculate the contribution of the rice distribution sector for CO₂ emissions in Indonesia as one of the environmental impacts that occur.

Methods

This study uses positivistic approach, while the analytical technique used is descriptive analysis based on literature reviews and studies. This study uses a distribution database conducted by BULOG, because based on the annual report of BULOG, the duties of BULOG are generally divided into two, namely commercial tasks and public tasks. Based on this, the distribution of rice carried out by BULOG can describe the general condition of rice distribution in Indonesia.

To calculate CO₂ emissions in rice distribution activities, using the following equation:

$$E = B \times J \times C$$

Explanation:

- E: Amount of CO₂ Emissions produced (kg per ton-km)
- B: Amount of rice distributed from Provinces A-B (tons)
- J: Distance between Provinces A-B (km)
- C: Conversion value of CO₂ residue based on the type of transportation mode (kg per tonne-km).

The conversion value (C) of CO₂ residue can be seen in tables 1 and 2 below:

Table 1. Value of CO₂ Residual Conversion of Land Transportation Modes

Transportation	Conversion Value of CO ₂		
Modes	(kg per ton-km)		
Truck	0,18		
Train	0,018		

Source. Davis dan Diegel (2007)

Table 2. Value of CO₂ Residual Conversion of Sea Transportation Modes

Transportation Modes	Conversion Value of CO ₂		
	(kg per tonne-km)		
Ferry	0,011		
Container Ship	0,014		

Source. Corbett dan Koehler (2003)

Results

Rice Distribution Channels in Indonesia

Indonesia is a maritime country with an area of 6,315,222 Km², in which the administrative area of Indonesia is only 1,900,000 Km² (Verstapen, 2013). Then, the very strategic geographical position of Indonesia makes Indonesia one of countries traversed by international shipping. It shows that sea transportation will be more efficient and cheaper than air transportation. The map of the archipelagic sea lanes in Indonesia can be seen in Figure 1.

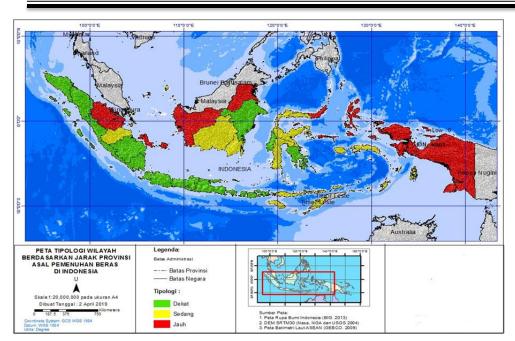
Figure 1 Map of The Archipelagic Sea Lanes in Indonesia

Source. IMO (2010)

Based on the result analysis, there are several typologies of rice distribution in Indonesia. This typology is based on the distance traveled and the amount of rice fulfillment in each province in Indonesia. The typology of rice distribution can be seen in Table 3 and figure 2.

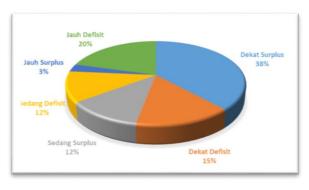
Table 3. Typology of Rice Distribution in Indonesia

Province	Distance (Km)	Typology
Aceh	3.021	Near Surplus
North Sumatera	2.654	Near Surplus
West Sumatera	2.074	Near Surplus
Riau	9.178	Remote Deficit
Jambi	4.489	Moderate Deficit
South Sumatera	1.725	Near Surplus
Bengkulu	2.980	Near Deficit
Lampung	3.010	Near Surplus
Kep. Bangka Belitung	7.893	Remote Deficit
Kep. Riau	6.104	Moderate Deficit
DKI Jakarta	1.468	Moderate Deficit
West Java	1.631	Near Surplus
Central Java	911	Near Surplus
D.I Yogyakarta	130	Near Deficit
East Java	1.697	Near Surplus
Banten	1.025	Near Deficit


Bali	1.298	Near Surplus
West Nusa Tenggara	673	Near Surplus
East Nusa Tenggara	5.347	Moderate Deficit
West Kalimantan	8.593	Remote Deficit
Central Kalimantan	4.871	Moderate Surplus
South Kalimantan	4.363	Moderate Surplus
East Kalimantan	3.215	Near Deficit
North Kalimantan	10.940	Remote Deficit
North Sulawesi	8.873	Remote Surplus
Central Sulawesi	1.240	Near Surplus
South Sulawesi	6.489	Moderate Surplus
South East Sulawesi	2.507	Near Surplus
Gorontalo	4.924	Moderate Surplus
West Sulawesi	839	Near Surplus
Maluku	6.764	Moderate Deficit
North Maluku	14.697	Remote Deficit
West Papua	11.774	Remote Deficit
Papua	8.955	Remote Deficit

Source. Analysis (2019)

In general, provinces in Indonesia have six typologies of rice distribution, namely: near surplus, near deficit, moderate surplus, moderate deficit, remote surplus, and remote deficit. The largest typology percentage is near surplus of 38%, that means as many as 13 provinces in Indonesia which are rice surplus areas have long distribution channels that are relatively close, but the second largest percentage is typology remote deficit, amounting to 20%. It means that 7 provinces in Indonesia which are rice deficit areas have long distribution channels. This shows that the rice distribution channel in Indonesia is still not effective, so the potential for CO₂ emissions to be generated will be higher following the vehicle mileage. The percentage of rice distribution typology in Indonesia can be seen in Figure 3.


Figure 2 The Map of Rice Distribution in Indonesia

Source. Analysis (2019)

Figure 3 The Percentage of Rice Distribution Typology in Indonesia

Source. Analysis (2019)

Carbon (CO2) Gas Emissions from Rice Distribution Activities

Increased mobility activities using fossil fuel vehicles are often the main source of increasing CO₂ emissions in the air. This fact of course also has an impact on global warming. Besides it, CO₂ emissions from vehicle activities can also endanger health such as respiratory infections, decreased lung, heart, and cancer performance (Sugiarti, 2009). Several alternatives to overcome this have been suggested and implemented. Some alternatives that can reduce air pollution due to vehicles are reducing vehicle operations, replacing diesel-fueled vehicles with gasoline, and using filters on motorized vehicles (Sutanhaji et al. 2015). Another alternative mentioned by (Shen, L. 2018) is optimizing commodity distribution channels. This alternative not only reduces distribution costs, but also reduces the resulting carbon (CO₂) emissions. The following is a discussion of carbon gas (CO₂) emissions resulting from rice distribution

activities.

Davis and Diegel (in Kissinger, 2012) stated that for trucks the CO₂ emissions emitted were 0,18 kg per ton kilometer and for trains as much as 0,018 kg CO₂ per ton kilometer, while for ferries, CO₂ emissions are released as much as 0,011 kg per ton kilometer and for container ships as much as 0,014 kg CO₂ per ton kilometer (Corbett and Koehler in Kissinger, 2012).

By using the conversion that has been described, it can be calculated the amount of CO₂ emissions resulting from the flow of rice trade in Indonesia. The following is a formula for calculating the amount of CO₂ emissions in this study.

$$E = B \times I \times C$$

Explanation:

- E: Amount of CO₂ Emissions produced (kg per tonne-km)
- B: Amount of rice distributed from Provinces A-B (tons)
- J: Distance between Provinces A-B (km)
- C: Conversion value of CO₂ residue based on the type of transportation mode (kg).

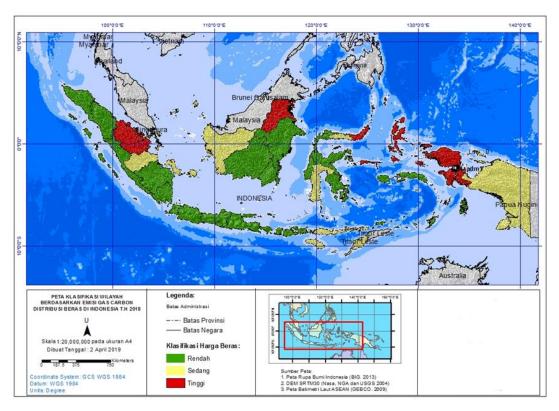
The amount of CO₂ emissions calculated by statistical data on the rice trade in Indonesia can be seen in Table 4 below:

Table 4. Analysis of Carbon Gas Emissions (CO-2) Rice Distribution Activities in Indonesia

No	Province	Mileage (km)	Transportati on Mode	Emission (ton km)	Total Emission (ton km)	CO ₂ Emission Classification
1	Aceh	3.021	Truck	543,78	543,78	Low
2	North Sumatera	2.654	Truck	477,72	477,72	Low
3	West Sumatera	2.074	Truck	373,32	373,32	Low
1	Diau	8.356,9	Truck	15.042,42	15 045 64	Lliah
4	Riau	821.11	821.11 Ferry 903,221	15.945,64	High	
5	Iomh:	4.431	Truck	797,58	798,22	Medium
3	Jambi	58	Ferry	0,638	790,22	Medium
6	South Sumatera	1.667	Truck	300,06	300.70	Small
O	South Sumatera	58	Ferry	0,638	300.70	Siliali
7	D 1 1	2.951	Truck	531,18	531,50	Small
/	Bengkulu	29	Ferry	0,319	331,30	Siliali
8	Lamana	2.981	Truck	536,58	E26 00	Small
0	Lampung	29	Ferry	0,319	536,90	Siliali
9	Kep. Bangka	5.192	Truck	934,56	064.27	Madium
9	Belitung	2.701	Ferry	29,711	964,27	Medium
10	Von Dien	5.692	Truck	1.024,56	1.020.00	Madiana
10	Kep. Riau	412	Ferry	4,532	1.029,09	Medium

Continued of Table 4

No	Province	Mileage (km)	Transportati on Mode	Emission (ton km)	Total Emission (ton km)	CO ₂ Emission Classification
11	DKI Jakarta	1.468	Truck	264,24	264,24	Low
12	West Java	1.631	Truck	293,58	293,58	Low
13	Central Java	911	Truck	163,98	163,98	Low
14	D.I.Y	130	Truck	23,4	23,4	Low
15	East Java	1.668	Truck	300,24	300,56	Low
13	East Java	29	Ferry	0,319	300,30	LOW
16	Banten	996	Truck	179,28	179,60	Low
10	Danten	29	Ferry	0,319	179,00	LOW
17	Bali	1.220	Truck	21,96	22,818	Low
17	Dan	78	Ferry	0,858	22,010	LOW
18	NTB	526	Truck	94,68	96,30	Low
10	NID	147	Ferry	1,617	90,30	LOW
19	NTT	4.084	Truck	735,12	749.01	Medium
1)	1111	1.263	Ferry	13,893	749.01	wiedium
20	West Kalimantan	6.162	Truck	1.109,16	1.135,90	Medium
20	West Rammantan	2.431	Ferry	26,741	1.100,70	Micaidill
21	Central Kalimantan	3.389	Truck	610,02	626,322	Low
21	Central Ramilantan	1.482	Ferry	16,302	020,322	LOW
22	South Kalimantan	2.881	Truck	518,58	534,882	Low
	South Rainhantan	1.482	Ferry	16,302	001,002	LOW
23	East Kalimantan	2.291	Truck	412,38	422,76	Low
20	Last Kamitartan	944	Ferry	10,384	422,70	LOW
24	North Kalimantan	9.502	Truck	1.710,36	1.725,19	High
-1	1 Voltii Rainitaittai	1.348	Ferry	14,828	1.720,17	
25	North Sulawesi	7.261	Truck	1.306,98	1.324,71	High
		1.612	Ferry	17,732		111611
26	Central Sulawesi	1.240	Truck	22,32	22,32	Low
27	South Sulawesi	4.071	Truck	732,78	759,38	Medium
	South Sulavesi	2.418	Ferry	26,598	707,00	Wedfull
28	South East	1.701	Truck	306,18	315,05	Low
20	Sulawesi	806	Ferry	8,866	010,00	2011
29	Gorontalo	4.118	Truck	741,24	750,11	Medium
		806	Ferry	8,866		
30	West Sulawesi	839	Truck	151,02	151,02	Low
31	Maluku	882	Truck	158,76	223.46	Low
=-		5.882	Ferry	64,702		- • •
32	North Maluku	1.0403	Truck	1.872,54	1.919,77	High
		4.294	Ferry	47,234		
33	West Papua	9.153	Truck	1.647,54	1.689,77	High

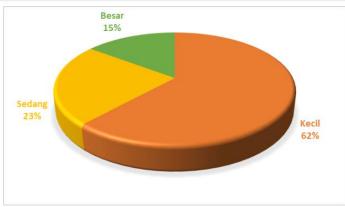


			3.839	Ferry	42,229		
34 Papua	D		4.226	Truck	760,68	010 70	M - 11
		4.729	Ferry	52,019	812,70	Medium	
		Total			36.007,97	36.007,97	

Source. Based on BPS rice trade distribution analysis and BULOG's Movenas (2019)

Based on table 4, if information on distribution of areas with the classification of CO2 emitters is obtained, information will be obtained as shown in Figures 4.

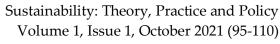
Figure 4 Classification of the Amount of CO2 Emissions from Rice Distribution Activities in Indonesia


Source. Analysis (2019)

Discussion

In general, emissions resulting from rice distribution activities in Indonesia are categorized as low classification, amounting to 62%, while the percentage of areas with medium classification in contributing CO2 emissions is 23%, and high classification is 23%. It can be seen on figure 5.

Figure 5 Percentage of Typology of Emissions from Rice Distribution Activities in Indonesia



Source. Analysis (2019)

Provinces that contribute the least carbon gas emissions are the Special Region of Yogyakarta Province. The province that contributed the most carbon emissions was Riau Province with a total emission of 15,945.64 tons kilometers. Several provinces that contribute carbon gas emissions with a medium to high classification are in eastern Indonesia. Provinces that contribute high carbon gas emissions are caused by the inability of the province's rice production to meet its local needs, so it must bring in rice from other provinces. Ideally, the province will bring rice from the surrounding area, but in this case the province in this category brings rice from more distant areas. It shows that there are still areas that are less effective in distributing rice and the selected distance is relatively long. The factor that causes a region to import rice is the ability of the region to meet the availability and import tariffs (Ilyas, A. et. al, 2020). This also applies to provincial decisions in determining rice supply areas to meet local needs. The spatial distribution of rice supply areas for each province in Indonesia can be seen in table 5.

Table 5. Spatial distribution of rice supply areas in Indonesia

No	Province		Region of Rice Fulfillment				
	South	South Sumatera	Lampung	DKI Jakarta	West		
1	Sumatera	(%)	(%)	(%)	Java (%)		
	Sumatera	85.63	0.25	6.05	8.07		
				South		Near	
2	East Java	Central Java (%)	East Java (%)	Sulawesi (%)		- 1 - 1 - 1	
		0.06	99.9	0.04		Surplus	
	Central	Central	South	West			
3	Sulawesi	Sulawesi (%)	Sulawesi (%)	Sulawesi (%)			
	Tengah	84.8	13.66	1.54			
	_	West Sumatera	South	Bengkulu	Lampung		
4	Bengkulu	(%)	Sumatera (%)	(%)	(%)	Near	
	-	0.49	1.74	29.85	66.94	Deficit	
5	D.I	Central Java (%)	D.I Yogyakarta				

12

13

Jambi

Riau Island

ISSN: 2808-4829

	Yogyakarta		(%)		
		61.91	38.09		
	East		East Kalimantan	South	
6	Kalimantan	East Java (%)	(%)	Sulawesi (%)	
	Tallitalia	7.65	8.81	83.54	
				South Sulawesi	Moderate
7	NTT	East Java (%)	NTT (%)	(%)	Deficit
,	1111				2 011011
		60,9	36,39	3,32	
		DKI Jakarta (%)	NTT (%)	East Java (%)	
		14,87	2,26	32,31	Middle
8	Central		South		Distance
	Kalimantan	Central	Kalimantan		Surplus
		Kalimantan (%)	(%)		
		47,24	3,32		
Conti	inued Table of 5				
No	Province]	Region Of Rice I	ulfillment	Category
'			West Java		
		DKI Jakarta (%)	(%)	East Java (%)	
	South	1,38	0,04	19	Moderate
9	Kalimantan		South		Surplus
	Kammantan	Central	Kalimantan		
		Kalimantan (%)	(%)		
		27,99	51,59		
			West Java		
		DKI Jakarta (%)	(%)	East Java (%)	Moderate
10	South	0,03	0,03	0,05	Surplus
10	Sulawesi	South Sulawesi	South East		
		(%)	Sulawesi (%)		
		99,38	0,51		
			South East	South Sulawesi	
		DKI Jakarta (%)	Sulawesi (%)	(%)	
11	Gorontalo	0,02	21,09	5,33	Moderate
		Gorontalo (%)	•		Surplus
		73,56			
		North Sumatera	West		
		(%)	Sumatera (%)	Jambi (%)	Moderate
		(70)	Samuela (70)	Janier (70)	Moderate

0,5

(%)

43,49

28,6

(%)

3,2

41,83

South Sumatera

Central Java (%)

North Sumatera

DKI Jakarta (%)

2,88

(%)

1,02

Bengkulu

Riau (%)

West Java

0,01

(%)

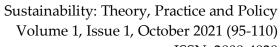
20,46

23,47

0,04

South

0,57

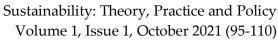

Sumatera (%)

DKI Jakarta (%)

Deficit

Moderate

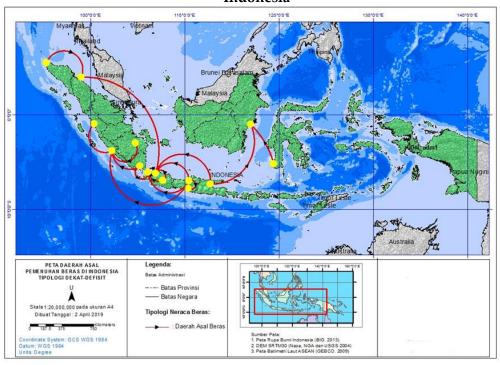
Deficit



14	Maluku	DKI Jakarta (%) 11,33 South Sulawesi (%) 14,95	East Java (%) 36,04 Maluku (%) 26,35		Moderate Deficit
		North Sumatera (%)	West Sumatera (%)	Riau (%) 71,19	Remote Deficit
15	Riau	Lampung (%) 0,21 East Java (%) 1,31	DKI Jakarta (%) 6,53 South Sulawesi (%) 12,06	West Java (%) 3,92	

Continued Table of 5

No	Province	Region of Rice Fulfillment			Category
	Bangka	South Sumatera (%)	Bangka Belitung Island (%)	DKI Jakarta (%)	
16	Belitung	7,59	36,54	34,39	Remote Deficit
	Island	North Sulawesi (%)	South Sulawesi (%)		
		6,05	4,32		
		DKI Jakarta (%)	West Java (%)	Central Java (%)	
	West	0,63	42,73	3,83	Remote Deficit
17	Kalimantan	East Java (%)	West Kalimantan (%)	South Sulawesi (%)	
		0,63	25,07	0,11	
		Central Java (%)	East Java (%)	East Kalimantan (%)	
18	North	1,98	4,57	0,85	Remote Deficit
	Kalimantan	North	South		
		Kalimantan (%)	Sulawesi (%)		
		3,44	89,16		
		DKI Jakarta (%)	Central Java (%)	East Java (%)	
10	North	0,67	0,06	0,89	Remote
19	Maluku	North Sulawesi	South	South East	Deficit
		(%)	Sulawesi (%)	Sulawesi (%)	
		0,18	84,6	0,02	
19		0,67 North Sulawesi	0,06 South Sulawesi (%)	0,89 South East	



		Gorontalo (%)	North Maluku (%) 12,59		
		Central Java (%)	East Java (%)	South Sulawesi (%)	
20	Mart Dans	0,09	3,76	87,27	Remote
20	West Papua	Maluku (%)	West Papua (%)		Deficit
		1,71	7,17		
21	Papua	East Java (%)	South Sulawesi (%)	Papua (%)	Remote Deficit

Source. BPS (2016)

Figure 6 Classification of the Amount of CO₂ Emissions from Rice Distribution Activities in Indonesia

Source. Analysis (2019)

Nationally, carbon gas emissions produced from various sectors have changed, either increasing or decreasing. Based on the 2018 climate change control statistics released by the

ministry of environment and forestry, it can be seen that until 2015 national greenhouse gas (GHG) emissions had increased and started to decrease in 2016 and 2018. It can be seen in Figure 7.

The graph of greenhouse gas emissions in Figure 7 is a graph shown from 5 sectors, namely energy, industrial processes and product use, agriculture, forestry and peat fires, and waste. Based on data from the Ministry of Energy and Mineral Resources, from the five sectors, carbon gas emissions from transportation activities are in the energy sector, where this sector is under the auspices of the Ministry of Energy and Mineral Resources. The Ministry of Energy and Mineral Resources (2016) states that the transportation sector is the sector that produces the largest GHG emissions compared to other sectors such as the industrial sector, commercial, household, and other sectors. The transportation sector in 2015 contributed 53%, followed by the industrial sector at 35%, the household sector at 8%, the other 3% and the commercial sector at 1%. The number of GHG emissions from the transportation sector nationally in 2015 was 137,94 million tons of CO₂. When compared with the total emissions generated from rice trading distribution activities, based on data from the origin of rice purchases, it was found that emissions from these activities were only 0,026%. It means that the contribution of CO₂ emissions from these activities is not significant.

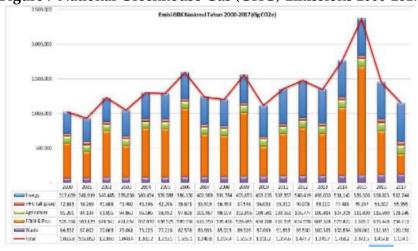


Figure 7 National Greenhouse Gas (GHG) Emissions 2000-2017

Source. BPS rice trade distribution analysis, Author 2019

The Ministry of Energy and Mineral Resources (2016) also mentions that the cause of the transportation sector being the largest contributor to GHGs is due to the high growth in the number of vehicles that occurs each year, besides the phenomenon of online-based public

transportation is also significantly contribute to increase the number of mode transportation, so that basically the amount of emissions from rice trading distribution activities is not a worrying thing compared to private transportation modes.

Conclusion

Based on the analysis that has been done, it can be concluded that the emission of carbon gas (CO₂) generated by the distribution of rice trading activities in Indonesia is basically insignificant when compared to the total contribution of emissions generated by transportation activities as a whole. Total emissions from rice distribution activities amounted to 36.007,97 tons km or 0,026% of the total emissions generated by transportation activities.

In terms of efficiency, there are still several provinces that have inefficient rice distribution channels, such as Riau province which contributes the highest carbon gas (CO₂) emissions. Provinces with the classification of medium and high emission levels are mostly located in the central and eastern parts of Indonesia.

References

- BPS. 2016. Distribusi Perdagangan Komoditas Beras Indonesia. Jakarta. Badan Pusat Statistik Corbett, J.J., Koehler, H.W., 2003. Updated emissions from ocean shipping. J. Geophys. Res. 108 (D20), 9-19-13.
- Davis, S.C., Diegel, S.W., 2007. Transportation Energy Data Book: Edition 26; ORNL-6978. Oak Ridge National Laboratory, Oak Ridge, TN.
- FAO. 2006. Food Security. Policy Brief of FAO (2006): 1-4. FAO's Agriculture and Development Economics Division (ESA). (online) www.fao.org/.../pdf/pdf_Food_Security_Cocept_Note.pdf. DIakses pada 11 Februari 2019.
- Horrigan, L., Lawrence, R. S., & Walker, P. (2002). How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environmental health perspectives, 110(5), 445-456.
- Hill, H. (2008). Food miles: Background and marketing (pp. 1-12). Attra.
- Ilyas, A., Noer, M., & Wahyuni, I. (2020). ANALISIS FAKTOR-FAKTOR YANG MEMENGARUHI KETERSEDIAAN BERAS DI INDONESIA ANALYSIS OF FACTORS THAT INFLUENCE RICE AVAILABILITY IN INDONESIA. Jurnal Pemikiran Masyarakat Ilmiah Berwawasan Agribisnis. Juli, 6(2), 740-753.
- IMO. (2010). Peta pengesahan ALKI. [Online]. International Maritime Organization. Tersedia dalam: http://www.imo.org/includes/blastDataOnly.asp/data-id%3D8751/200-a1-ALKII-IIIAnnexVII.pdf.
- Kemp, K., Insch, A., Holdsworth, D. K., & Knight, J. G. (2010). Food miles: Do UK consumers actually care?. Food policy, 35(6), 504-513.

- Kissinger, M. (2012). International trade related food miles—The case of Canada. Food policy, 37(2), 171-178.
- Lupita, C. P., Sudarno, S., & Istirokhatun, T. (2013). *Analisis Pengaruh Umur Mesin, Periode Servis Dan Jarak Tempuh Terhadap Konsentrasi Emisi CO, Nox, HC Dan CO2 Pada Sepeda Motor Tipe Sport (Studi Kasus: Motor Yamaha Vixion)* (Doctoral dissertation, Diponegoro University).
- Nugroho, C. P., & Mutisari, R. (2016). Analisis Indikator Ketahanan Pangan Kota Probolinggo: Pendekatan Spasial. Agricultural Socio-Economics Journal, 15(3), 166.
- Pollutan Gasses and The Influence of Human Healt. Jurnal Chemica Vol. 10. 50-58.
- Pinstrup-Andersen, P. (2009). Food security: definition and measurement. Food security, 1(1), 5-7.
- Rigby, D., & Bown, S. (2003). Organic food and global trade: is the market delivering agricultural sustainability?. University of Manchester, School of Economic Studies.
- Rivani, E. (2012). Penentuan Dimensi Serta Indikator Ketahanan Pangan di Indonesia: Kaji Ulang Metode Dewan Ketahanan Pangan-World Food Program. Widyariset, XV, 1, 151-161.
- Saunders, C. M., Barber, A., & Taylor, G. J. (2006). Food miles-comparative energy/emissions performance of New Zealand's agriculture industry.
- Shen, L., Tao, F., & Wang, S. (2018). Multi-depot open vehicle routing problem with time windows based on carbon trading. *International journal of environmental research and public health*, 15(9), 2025.
- Sugiarti. 2009. Gas Pencemar Udara Dan Pengaruhnya Bagi Kesehatan Manusia Air
- Sutanhaji, A. T., Anugroho, F., & Ramadhina, P. G. (2018). Pemetaan Distribusi Emisi Gas Karbon Dioksida (CO2) dengan Sistem Informasi Geografis (SIG) pada Kota Blitar. *Jurnal Sumberdaya Alam dan Lingkungan*, 5(1), 34-42.
- Verstappen, H. Th. (2013). Garis Besar Geomorfologi Indonesia, (Diterjemahkan oleh Sutikno), Suratman (Editor). Yogyakarta: Gadjah Mada University Press. World Bank. 2018. Population Total. (online) https://data.worldbank.org/indicator/sp.pop.totl diakses pada 15 November 2018.